Copied to
clipboard

G = C324D9⋊C3order 486 = 2·35

5th semidirect product of C324D9 and C3 acting faithfully

metabelian, supersoluble, monomial

Aliases: (C32×C9)⋊13C6, He3.C33S3, C3⋊(He3.S3), C324D95C3, He3.1(C3⋊S3), (C3×He3).16S3, C33.65(C3×S3), C3.7(He34S3), C32.18(C32⋊C6), (C3×C9)⋊18(C3×S3), (C3×He3.C3)⋊4C2, C32.17(C3×C3⋊S3), SmallGroup(486,170)

Series: Derived Chief Lower central Upper central

C1C32×C9 — C324D9⋊C3
C1C3C32C33C32×C9C3×He3.C3 — C324D9⋊C3
C32×C9 — C324D9⋊C3
C1

Generators and relations for C324D9⋊C3
 G = < a,b,c,d,e,f | a3=b3=c3=d3=f2=1, e3=fbf=b-1, ab=ba, cac-1=ab-1, ad=da, ae=ea, faf=a-1, bc=cb, bd=db, be=eb, cd=dc, ece-1=a-1bc, cf=fc, de=ed, fdf=d-1, fef=be2 >

Subgroups: 1088 in 96 conjugacy classes, 22 normal (11 characteristic)
C1, C2, C3, C3, C3, S3, C6, C9, C32, C32, C32, D9, C3×S3, C3⋊S3, C3×C9, C3×C9, He3, He3, 3- 1+2, C33, C33, C32⋊C6, C9⋊S3, C3×C3⋊S3, C33⋊C2, He3.C3, He3.C3, C32×C9, C3×He3, C3×3- 1+2, He3.S3, He34S3, C324D9, C3×He3.C3, C324D9⋊C3
Quotients: C1, C2, C3, S3, C6, C3×S3, C3⋊S3, C32⋊C6, C3×C3⋊S3, He3.S3, He34S3, C324D9⋊C3

Character table of C324D9⋊C3

 class 123A3B3C3D3E3F3G3H3I3J3K6A6B9A9B9C9D9E9F9G9H9I9J9K9L9M9N9O
 size 18122226669918188181666666666181818181818
ρ1111111111111111111111111111111    trivial
ρ21-111111111111-1-1111111111111111    linear of order 2
ρ31-11111111ζ32ζ3ζ32ζ3ζ6ζ65111111111ζ32ζ32ζ32ζ3ζ3ζ3    linear of order 6
ρ4111111111ζ3ζ32ζ3ζ32ζ3ζ32111111111ζ3ζ3ζ3ζ32ζ32ζ32    linear of order 3
ρ5111111111ζ32ζ3ζ32ζ3ζ32ζ3111111111ζ32ζ32ζ32ζ3ζ3ζ3    linear of order 3
ρ61-11111111ζ3ζ32ζ3ζ32ζ65ζ6111111111ζ3ζ3ζ3ζ32ζ32ζ32    linear of order 6
ρ7202222222222200-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ8202-1-1-1-12-122-1-100-1-1222-1-1-1-12-1-1-12-1    orthogonal lifted from S3
ρ9202-1-1-1-12-122-1-100-1-1-1-1-1222-1-12-1-1-12    orthogonal lifted from S3
ρ10202-1-1-1-12-122-1-10022-1-1-1-1-1-12-1-122-1-1    orthogonal lifted from S3
ρ11202-1-1-1-12-1-1--3-1+-3ζ6ζ6500-1-1-1-1-1222-1ζ6-1--3ζ6ζ65ζ65-1+-3    complex lifted from C3×S3
ρ12202-1-1-1-12-1-1--3-1+-3ζ6ζ650022-1-1-1-1-1-12ζ6ζ6-1--3-1+-3ζ65ζ65    complex lifted from C3×S3
ρ13202-1-1-1-12-1-1+-3-1--3ζ65ζ60022-1-1-1-1-1-12ζ65ζ65-1+-3-1--3ζ6ζ6    complex lifted from C3×S3
ρ14202-1-1-1-12-1-1--3-1+-3ζ6ζ6500-1-1222-1-1-1-1-1--3ζ6ζ6ζ65-1+-3ζ65    complex lifted from C3×S3
ρ15202-1-1-1-12-1-1+-3-1--3ζ65ζ600-1-1222-1-1-1-1-1+-3ζ65ζ65ζ6-1--3ζ6    complex lifted from C3×S3
ρ16202222222-1--3-1+-3-1--3-1+-300-1-1-1-1-1-1-1-1-1ζ6ζ6ζ6ζ65ζ65ζ65    complex lifted from C3×S3
ρ17202222222-1+-3-1--3-1+-3-1--300-1-1-1-1-1-1-1-1-1ζ65ζ65ζ65ζ6ζ6ζ6    complex lifted from C3×S3
ρ18202-1-1-1-12-1-1+-3-1--3ζ65ζ600-1-1-1-1-1222-1ζ65-1+-3ζ65ζ6ζ6-1--3    complex lifted from C3×S3
ρ19606-3-3-36-3-3000000000000000000000    orthogonal lifted from C32⋊C6
ρ20606666-3-3-3000000000000000000000    orthogonal lifted from C32⋊C6
ρ21606-3-3-3-3-36000000000000000000000    orthogonal lifted from C32⋊C6
ρ2260-36-3-3000000000ζ989794+2ζ92ζ989492+2ζ99594929ζ989794+2ζ92ζ989492+2ζ99594929ζ989794+2ζ92ζ989492+2ζ99594929000000    orthogonal lifted from He3.S3
ρ2360-3-3-36000000000ζ989794+2ζ92ζ989492+2ζ9ζ989794+2ζ92ζ989492+2ζ99594929ζ989492+2ζ99594929ζ989794+2ζ929594929000000    orthogonal lifted from He3.S3
ρ2460-3-36-30000000009594929ζ989794+2ζ92ζ989794+2ζ92ζ989492+2ζ995949299594929ζ989794+2ζ92ζ989492+2ζ9ζ989492+2ζ9000000    orthogonal lifted from He3.S3
ρ2560-3-3-360000000009594929ζ989794+2ζ929594929ζ989794+2ζ92ζ989492+2ζ9ζ989794+2ζ92ζ989492+2ζ99594929ζ989492+2ζ9000000    orthogonal lifted from He3.S3
ρ2660-36-3-3000000000ζ989492+2ζ99594929ζ989794+2ζ92ζ989492+2ζ99594929ζ989794+2ζ92ζ989492+2ζ99594929ζ989794+2ζ92000000    orthogonal lifted from He3.S3
ρ2760-3-3-36000000000ζ989492+2ζ99594929ζ989492+2ζ99594929ζ989794+2ζ929594929ζ989794+2ζ92ζ989492+2ζ9ζ989794+2ζ92000000    orthogonal lifted from He3.S3
ρ2860-36-3-30000000009594929ζ989794+2ζ92ζ989492+2ζ99594929ζ989794+2ζ92ζ989492+2ζ99594929ζ989794+2ζ92ζ989492+2ζ9000000    orthogonal lifted from He3.S3
ρ2960-3-36-3000000000ζ989492+2ζ995949299594929ζ989794+2ζ92ζ989492+2ζ9ζ989492+2ζ99594929ζ989794+2ζ92ζ989794+2ζ92000000    orthogonal lifted from He3.S3
ρ3060-3-36-3000000000ζ989794+2ζ92ζ989492+2ζ9ζ989492+2ζ99594929ζ989794+2ζ92ζ989794+2ζ92ζ989492+2ζ995949299594929000000    orthogonal lifted from He3.S3

Smallest permutation representation of C324D9⋊C3
On 81 points
Generators in S81
(1 79 50)(2 80 51)(3 81 52)(4 73 53)(5 74 54)(6 75 46)(7 76 47)(8 77 48)(9 78 49)(10 63 25)(11 55 26)(12 56 27)(13 57 19)(14 58 20)(15 59 21)(16 60 22)(17 61 23)(18 62 24)(28 69 39)(29 70 40)(30 71 41)(31 72 42)(32 64 43)(33 65 44)(34 66 45)(35 67 37)(36 68 38)
(1 7 4)(2 8 5)(3 9 6)(10 16 13)(11 17 14)(12 18 15)(19 25 22)(20 26 23)(21 27 24)(28 34 31)(29 35 32)(30 36 33)(37 43 40)(38 44 41)(39 45 42)(46 52 49)(47 53 50)(48 54 51)(55 61 58)(56 62 59)(57 63 60)(64 70 67)(65 71 68)(66 72 69)(73 79 76)(74 80 77)(75 81 78)
(2 51 74)(3 81 49)(5 54 77)(6 75 52)(8 48 80)(9 78 46)(10 25 57)(11 55 23)(13 19 60)(14 58 26)(16 22 63)(17 61 20)(21 24 27)(28 45 66)(29 67 40)(30 36 33)(31 39 69)(32 70 43)(34 42 72)(35 64 37)(47 50 53)(56 62 59)(65 68 71)(73 79 76)
(1 38 18)(2 39 10)(3 40 11)(4 41 12)(5 42 13)(6 43 14)(7 44 15)(8 45 16)(9 37 17)(19 54 72)(20 46 64)(21 47 65)(22 48 66)(23 49 67)(24 50 68)(25 51 69)(26 52 70)(27 53 71)(28 63 80)(29 55 81)(30 56 73)(31 57 74)(32 58 75)(33 59 76)(34 60 77)(35 61 78)(36 62 79)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)
(2 9)(3 8)(4 7)(5 6)(10 37)(11 45)(12 44)(13 43)(14 42)(15 41)(16 40)(17 39)(18 38)(19 32)(20 31)(21 30)(22 29)(23 28)(24 36)(25 35)(26 34)(27 33)(46 74)(47 73)(48 81)(49 80)(50 79)(51 78)(52 77)(53 76)(54 75)(55 66)(56 65)(57 64)(58 72)(59 71)(60 70)(61 69)(62 68)(63 67)

G:=sub<Sym(81)| (1,79,50)(2,80,51)(3,81,52)(4,73,53)(5,74,54)(6,75,46)(7,76,47)(8,77,48)(9,78,49)(10,63,25)(11,55,26)(12,56,27)(13,57,19)(14,58,20)(15,59,21)(16,60,22)(17,61,23)(18,62,24)(28,69,39)(29,70,40)(30,71,41)(31,72,42)(32,64,43)(33,65,44)(34,66,45)(35,67,37)(36,68,38), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51)(55,61,58)(56,62,59)(57,63,60)(64,70,67)(65,71,68)(66,72,69)(73,79,76)(74,80,77)(75,81,78), (2,51,74)(3,81,49)(5,54,77)(6,75,52)(8,48,80)(9,78,46)(10,25,57)(11,55,23)(13,19,60)(14,58,26)(16,22,63)(17,61,20)(21,24,27)(28,45,66)(29,67,40)(30,36,33)(31,39,69)(32,70,43)(34,42,72)(35,64,37)(47,50,53)(56,62,59)(65,68,71)(73,79,76), (1,38,18)(2,39,10)(3,40,11)(4,41,12)(5,42,13)(6,43,14)(7,44,15)(8,45,16)(9,37,17)(19,54,72)(20,46,64)(21,47,65)(22,48,66)(23,49,67)(24,50,68)(25,51,69)(26,52,70)(27,53,71)(28,63,80)(29,55,81)(30,56,73)(31,57,74)(32,58,75)(33,59,76)(34,60,77)(35,61,78)(36,62,79), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81), (2,9)(3,8)(4,7)(5,6)(10,37)(11,45)(12,44)(13,43)(14,42)(15,41)(16,40)(17,39)(18,38)(19,32)(20,31)(21,30)(22,29)(23,28)(24,36)(25,35)(26,34)(27,33)(46,74)(47,73)(48,81)(49,80)(50,79)(51,78)(52,77)(53,76)(54,75)(55,66)(56,65)(57,64)(58,72)(59,71)(60,70)(61,69)(62,68)(63,67)>;

G:=Group( (1,79,50)(2,80,51)(3,81,52)(4,73,53)(5,74,54)(6,75,46)(7,76,47)(8,77,48)(9,78,49)(10,63,25)(11,55,26)(12,56,27)(13,57,19)(14,58,20)(15,59,21)(16,60,22)(17,61,23)(18,62,24)(28,69,39)(29,70,40)(30,71,41)(31,72,42)(32,64,43)(33,65,44)(34,66,45)(35,67,37)(36,68,38), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51)(55,61,58)(56,62,59)(57,63,60)(64,70,67)(65,71,68)(66,72,69)(73,79,76)(74,80,77)(75,81,78), (2,51,74)(3,81,49)(5,54,77)(6,75,52)(8,48,80)(9,78,46)(10,25,57)(11,55,23)(13,19,60)(14,58,26)(16,22,63)(17,61,20)(21,24,27)(28,45,66)(29,67,40)(30,36,33)(31,39,69)(32,70,43)(34,42,72)(35,64,37)(47,50,53)(56,62,59)(65,68,71)(73,79,76), (1,38,18)(2,39,10)(3,40,11)(4,41,12)(5,42,13)(6,43,14)(7,44,15)(8,45,16)(9,37,17)(19,54,72)(20,46,64)(21,47,65)(22,48,66)(23,49,67)(24,50,68)(25,51,69)(26,52,70)(27,53,71)(28,63,80)(29,55,81)(30,56,73)(31,57,74)(32,58,75)(33,59,76)(34,60,77)(35,61,78)(36,62,79), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81), (2,9)(3,8)(4,7)(5,6)(10,37)(11,45)(12,44)(13,43)(14,42)(15,41)(16,40)(17,39)(18,38)(19,32)(20,31)(21,30)(22,29)(23,28)(24,36)(25,35)(26,34)(27,33)(46,74)(47,73)(48,81)(49,80)(50,79)(51,78)(52,77)(53,76)(54,75)(55,66)(56,65)(57,64)(58,72)(59,71)(60,70)(61,69)(62,68)(63,67) );

G=PermutationGroup([[(1,79,50),(2,80,51),(3,81,52),(4,73,53),(5,74,54),(6,75,46),(7,76,47),(8,77,48),(9,78,49),(10,63,25),(11,55,26),(12,56,27),(13,57,19),(14,58,20),(15,59,21),(16,60,22),(17,61,23),(18,62,24),(28,69,39),(29,70,40),(30,71,41),(31,72,42),(32,64,43),(33,65,44),(34,66,45),(35,67,37),(36,68,38)], [(1,7,4),(2,8,5),(3,9,6),(10,16,13),(11,17,14),(12,18,15),(19,25,22),(20,26,23),(21,27,24),(28,34,31),(29,35,32),(30,36,33),(37,43,40),(38,44,41),(39,45,42),(46,52,49),(47,53,50),(48,54,51),(55,61,58),(56,62,59),(57,63,60),(64,70,67),(65,71,68),(66,72,69),(73,79,76),(74,80,77),(75,81,78)], [(2,51,74),(3,81,49),(5,54,77),(6,75,52),(8,48,80),(9,78,46),(10,25,57),(11,55,23),(13,19,60),(14,58,26),(16,22,63),(17,61,20),(21,24,27),(28,45,66),(29,67,40),(30,36,33),(31,39,69),(32,70,43),(34,42,72),(35,64,37),(47,50,53),(56,62,59),(65,68,71),(73,79,76)], [(1,38,18),(2,39,10),(3,40,11),(4,41,12),(5,42,13),(6,43,14),(7,44,15),(8,45,16),(9,37,17),(19,54,72),(20,46,64),(21,47,65),(22,48,66),(23,49,67),(24,50,68),(25,51,69),(26,52,70),(27,53,71),(28,63,80),(29,55,81),(30,56,73),(31,57,74),(32,58,75),(33,59,76),(34,60,77),(35,61,78),(36,62,79)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81)], [(2,9),(3,8),(4,7),(5,6),(10,37),(11,45),(12,44),(13,43),(14,42),(15,41),(16,40),(17,39),(18,38),(19,32),(20,31),(21,30),(22,29),(23,28),(24,36),(25,35),(26,34),(27,33),(46,74),(47,73),(48,81),(49,80),(50,79),(51,78),(52,77),(53,76),(54,75),(55,66),(56,65),(57,64),(58,72),(59,71),(60,70),(61,69),(62,68),(63,67)]])

Matrix representation of C324D9⋊C3 in GL8(𝔽19)

10000000
01000000
00001000
00000100
00000010
00000001
00100000
00010000
,
10000000
01000000
00010000
0018180000
00000100
0000181800
00000001
0000001818
,
70000000
07000000
00000001
0000001818
00100000
00010000
0000181800
00001000
,
173000000
181000000
00100000
00010000
00001000
00000100
00000010
00000001
,
116000000
117000000
001815181543
004343161
004318151815
001614343
001815431815
004316143
,
216000000
117000000
0016151831615
0018341183
0018316151615
0041183183
0016151615183
0018318341

G:=sub<GL(8,GF(19))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,1,18,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,1,18,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,1,18],[7,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,18,1,0,0,0,0,0,0,18,0,0,0,0,18,0,0,0,0,0,0,1,18,0,0,0,0],[17,18,0,0,0,0,0,0,3,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,1,0,0,0,0,0,0,16,17,0,0,0,0,0,0,0,0,18,4,4,16,18,4,0,0,15,3,3,1,15,3,0,0,18,4,18,4,4,16,0,0,15,3,15,3,3,1,0,0,4,16,18,4,18,4,0,0,3,1,15,3,15,3],[2,1,0,0,0,0,0,0,16,17,0,0,0,0,0,0,0,0,16,18,18,4,16,18,0,0,15,3,3,1,15,3,0,0,18,4,16,18,16,18,0,0,3,1,15,3,15,3,0,0,16,18,16,18,18,4,0,0,15,3,15,3,3,1] >;

C324D9⋊C3 in GAP, Magma, Sage, TeX

C_3^2\rtimes_4D_9\rtimes C_3
% in TeX

G:=Group("C3^2:4D9:C3");
// GroupNames label

G:=SmallGroup(486,170);
// by ID

G=gap.SmallGroup(486,170);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,6050,548,500,867,3244,3250,11669]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^3=c^3=d^3=f^2=1,e^3=f*b*f=b^-1,a*b=b*a,c*a*c^-1=a*b^-1,a*d=d*a,a*e=e*a,f*a*f=a^-1,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=a^-1*b*c,c*f=f*c,d*e=e*d,f*d*f=d^-1,f*e*f=b*e^2>;
// generators/relations

Export

Character table of C324D9⋊C3 in TeX

׿
×
𝔽