metabelian, supersoluble, monomial
Aliases: (C32×C9)⋊13C6, He3.C3⋊3S3, C3⋊(He3.S3), C32⋊4D9⋊5C3, He3.1(C3⋊S3), (C3×He3).16S3, C33.65(C3×S3), C3.7(He3⋊4S3), C32.18(C32⋊C6), (C3×C9)⋊18(C3×S3), (C3×He3.C3)⋊4C2, C32.17(C3×C3⋊S3), SmallGroup(486,170)
Series: Derived ►Chief ►Lower central ►Upper central
C32×C9 — C32⋊4D9⋊C3 |
Generators and relations for C32⋊4D9⋊C3
G = < a,b,c,d,e,f | a3=b3=c3=d3=f2=1, e3=fbf=b-1, ab=ba, cac-1=ab-1, ad=da, ae=ea, faf=a-1, bc=cb, bd=db, be=eb, cd=dc, ece-1=a-1bc, cf=fc, de=ed, fdf=d-1, fef=be2 >
Subgroups: 1088 in 96 conjugacy classes, 22 normal (11 characteristic)
C1, C2, C3, C3, C3, S3, C6, C9, C32, C32, C32, D9, C3×S3, C3⋊S3, C3×C9, C3×C9, He3, He3, 3- 1+2, C33, C33, C32⋊C6, C9⋊S3, C3×C3⋊S3, C33⋊C2, He3.C3, He3.C3, C32×C9, C3×He3, C3×3- 1+2, He3.S3, He3⋊4S3, C32⋊4D9, C3×He3.C3, C32⋊4D9⋊C3
Quotients: C1, C2, C3, S3, C6, C3×S3, C3⋊S3, C32⋊C6, C3×C3⋊S3, He3.S3, He3⋊4S3, C32⋊4D9⋊C3
Character table of C32⋊4D9⋊C3
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 3I | 3J | 3K | 6A | 6B | 9A | 9B | 9C | 9D | 9E | 9F | 9G | 9H | 9I | 9J | 9K | 9L | 9M | 9N | 9O | |
size | 1 | 81 | 2 | 2 | 2 | 2 | 6 | 6 | 6 | 9 | 9 | 18 | 18 | 81 | 81 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 18 | 18 | 18 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ6 | ζ65 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | linear of order 6 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | linear of order 3 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | linear of order 3 |
ρ6 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ65 | ζ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | linear of order 6 |
ρ7 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ8 | 2 | 0 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | -1 | orthogonal lifted from S3 |
ρ9 | 2 | 0 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | orthogonal lifted from S3 |
ρ10 | 2 | 0 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | 2 | 2 | -1 | -1 | orthogonal lifted from S3 |
ρ11 | 2 | 0 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | -1-√-3 | -1+√-3 | ζ6 | ζ65 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | ζ6 | -1-√-3 | ζ6 | ζ65 | ζ65 | -1+√-3 | complex lifted from C3×S3 |
ρ12 | 2 | 0 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | -1-√-3 | -1+√-3 | ζ6 | ζ65 | 0 | 0 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | ζ6 | ζ6 | -1-√-3 | -1+√-3 | ζ65 | ζ65 | complex lifted from C3×S3 |
ρ13 | 2 | 0 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | -1+√-3 | -1-√-3 | ζ65 | ζ6 | 0 | 0 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | ζ65 | ζ65 | -1+√-3 | -1-√-3 | ζ6 | ζ6 | complex lifted from C3×S3 |
ρ14 | 2 | 0 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | -1-√-3 | -1+√-3 | ζ6 | ζ65 | 0 | 0 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1-√-3 | ζ6 | ζ6 | ζ65 | -1+√-3 | ζ65 | complex lifted from C3×S3 |
ρ15 | 2 | 0 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | -1+√-3 | -1-√-3 | ζ65 | ζ6 | 0 | 0 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1+√-3 | ζ65 | ζ65 | ζ6 | -1-√-3 | ζ6 | complex lifted from C3×S3 |
ρ16 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -1-√-3 | -1+√-3 | -1-√-3 | -1+√-3 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | ζ6 | ζ6 | ζ6 | ζ65 | ζ65 | ζ65 | complex lifted from C3×S3 |
ρ17 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -1+√-3 | -1-√-3 | -1+√-3 | -1-√-3 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | ζ65 | ζ65 | ζ65 | ζ6 | ζ6 | ζ6 | complex lifted from C3×S3 |
ρ18 | 2 | 0 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | -1+√-3 | -1-√-3 | ζ65 | ζ6 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | ζ65 | -1+√-3 | ζ65 | ζ6 | ζ6 | -1-√-3 | complex lifted from C3×S3 |
ρ19 | 6 | 0 | 6 | -3 | -3 | -3 | 6 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊C6 |
ρ20 | 6 | 0 | 6 | 6 | 6 | 6 | -3 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊C6 |
ρ21 | 6 | 0 | 6 | -3 | -3 | -3 | -3 | -3 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊C6 |
ρ22 | 6 | 0 | -3 | 6 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from He3.S3 |
ρ23 | 6 | 0 | -3 | -3 | -3 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | 2ζ95+ζ94+ζ92-ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from He3.S3 |
ρ24 | 6 | 0 | -3 | -3 | 6 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | ζ98+ζ94-ζ92+2ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from He3.S3 |
ρ25 | 6 | 0 | -3 | -3 | -3 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ94-ζ92+2ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from He3.S3 |
ρ26 | 6 | 0 | -3 | 6 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from He3.S3 |
ρ27 | 6 | 0 | -3 | -3 | -3 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | ζ98+ζ97-ζ94+2ζ92 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from He3.S3 |
ρ28 | 6 | 0 | -3 | 6 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from He3.S3 |
ρ29 | 6 | 0 | -3 | -3 | 6 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ97-ζ94+2ζ92 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from He3.S3 |
ρ30 | 6 | 0 | -3 | -3 | 6 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | 2ζ95+ζ94+ζ92-ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from He3.S3 |
(1 79 50)(2 80 51)(3 81 52)(4 73 53)(5 74 54)(6 75 46)(7 76 47)(8 77 48)(9 78 49)(10 63 25)(11 55 26)(12 56 27)(13 57 19)(14 58 20)(15 59 21)(16 60 22)(17 61 23)(18 62 24)(28 69 39)(29 70 40)(30 71 41)(31 72 42)(32 64 43)(33 65 44)(34 66 45)(35 67 37)(36 68 38)
(1 7 4)(2 8 5)(3 9 6)(10 16 13)(11 17 14)(12 18 15)(19 25 22)(20 26 23)(21 27 24)(28 34 31)(29 35 32)(30 36 33)(37 43 40)(38 44 41)(39 45 42)(46 52 49)(47 53 50)(48 54 51)(55 61 58)(56 62 59)(57 63 60)(64 70 67)(65 71 68)(66 72 69)(73 79 76)(74 80 77)(75 81 78)
(2 51 74)(3 81 49)(5 54 77)(6 75 52)(8 48 80)(9 78 46)(10 25 57)(11 55 23)(13 19 60)(14 58 26)(16 22 63)(17 61 20)(21 24 27)(28 45 66)(29 67 40)(30 36 33)(31 39 69)(32 70 43)(34 42 72)(35 64 37)(47 50 53)(56 62 59)(65 68 71)(73 79 76)
(1 38 18)(2 39 10)(3 40 11)(4 41 12)(5 42 13)(6 43 14)(7 44 15)(8 45 16)(9 37 17)(19 54 72)(20 46 64)(21 47 65)(22 48 66)(23 49 67)(24 50 68)(25 51 69)(26 52 70)(27 53 71)(28 63 80)(29 55 81)(30 56 73)(31 57 74)(32 58 75)(33 59 76)(34 60 77)(35 61 78)(36 62 79)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)
(2 9)(3 8)(4 7)(5 6)(10 37)(11 45)(12 44)(13 43)(14 42)(15 41)(16 40)(17 39)(18 38)(19 32)(20 31)(21 30)(22 29)(23 28)(24 36)(25 35)(26 34)(27 33)(46 74)(47 73)(48 81)(49 80)(50 79)(51 78)(52 77)(53 76)(54 75)(55 66)(56 65)(57 64)(58 72)(59 71)(60 70)(61 69)(62 68)(63 67)
G:=sub<Sym(81)| (1,79,50)(2,80,51)(3,81,52)(4,73,53)(5,74,54)(6,75,46)(7,76,47)(8,77,48)(9,78,49)(10,63,25)(11,55,26)(12,56,27)(13,57,19)(14,58,20)(15,59,21)(16,60,22)(17,61,23)(18,62,24)(28,69,39)(29,70,40)(30,71,41)(31,72,42)(32,64,43)(33,65,44)(34,66,45)(35,67,37)(36,68,38), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51)(55,61,58)(56,62,59)(57,63,60)(64,70,67)(65,71,68)(66,72,69)(73,79,76)(74,80,77)(75,81,78), (2,51,74)(3,81,49)(5,54,77)(6,75,52)(8,48,80)(9,78,46)(10,25,57)(11,55,23)(13,19,60)(14,58,26)(16,22,63)(17,61,20)(21,24,27)(28,45,66)(29,67,40)(30,36,33)(31,39,69)(32,70,43)(34,42,72)(35,64,37)(47,50,53)(56,62,59)(65,68,71)(73,79,76), (1,38,18)(2,39,10)(3,40,11)(4,41,12)(5,42,13)(6,43,14)(7,44,15)(8,45,16)(9,37,17)(19,54,72)(20,46,64)(21,47,65)(22,48,66)(23,49,67)(24,50,68)(25,51,69)(26,52,70)(27,53,71)(28,63,80)(29,55,81)(30,56,73)(31,57,74)(32,58,75)(33,59,76)(34,60,77)(35,61,78)(36,62,79), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81), (2,9)(3,8)(4,7)(5,6)(10,37)(11,45)(12,44)(13,43)(14,42)(15,41)(16,40)(17,39)(18,38)(19,32)(20,31)(21,30)(22,29)(23,28)(24,36)(25,35)(26,34)(27,33)(46,74)(47,73)(48,81)(49,80)(50,79)(51,78)(52,77)(53,76)(54,75)(55,66)(56,65)(57,64)(58,72)(59,71)(60,70)(61,69)(62,68)(63,67)>;
G:=Group( (1,79,50)(2,80,51)(3,81,52)(4,73,53)(5,74,54)(6,75,46)(7,76,47)(8,77,48)(9,78,49)(10,63,25)(11,55,26)(12,56,27)(13,57,19)(14,58,20)(15,59,21)(16,60,22)(17,61,23)(18,62,24)(28,69,39)(29,70,40)(30,71,41)(31,72,42)(32,64,43)(33,65,44)(34,66,45)(35,67,37)(36,68,38), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51)(55,61,58)(56,62,59)(57,63,60)(64,70,67)(65,71,68)(66,72,69)(73,79,76)(74,80,77)(75,81,78), (2,51,74)(3,81,49)(5,54,77)(6,75,52)(8,48,80)(9,78,46)(10,25,57)(11,55,23)(13,19,60)(14,58,26)(16,22,63)(17,61,20)(21,24,27)(28,45,66)(29,67,40)(30,36,33)(31,39,69)(32,70,43)(34,42,72)(35,64,37)(47,50,53)(56,62,59)(65,68,71)(73,79,76), (1,38,18)(2,39,10)(3,40,11)(4,41,12)(5,42,13)(6,43,14)(7,44,15)(8,45,16)(9,37,17)(19,54,72)(20,46,64)(21,47,65)(22,48,66)(23,49,67)(24,50,68)(25,51,69)(26,52,70)(27,53,71)(28,63,80)(29,55,81)(30,56,73)(31,57,74)(32,58,75)(33,59,76)(34,60,77)(35,61,78)(36,62,79), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81), (2,9)(3,8)(4,7)(5,6)(10,37)(11,45)(12,44)(13,43)(14,42)(15,41)(16,40)(17,39)(18,38)(19,32)(20,31)(21,30)(22,29)(23,28)(24,36)(25,35)(26,34)(27,33)(46,74)(47,73)(48,81)(49,80)(50,79)(51,78)(52,77)(53,76)(54,75)(55,66)(56,65)(57,64)(58,72)(59,71)(60,70)(61,69)(62,68)(63,67) );
G=PermutationGroup([[(1,79,50),(2,80,51),(3,81,52),(4,73,53),(5,74,54),(6,75,46),(7,76,47),(8,77,48),(9,78,49),(10,63,25),(11,55,26),(12,56,27),(13,57,19),(14,58,20),(15,59,21),(16,60,22),(17,61,23),(18,62,24),(28,69,39),(29,70,40),(30,71,41),(31,72,42),(32,64,43),(33,65,44),(34,66,45),(35,67,37),(36,68,38)], [(1,7,4),(2,8,5),(3,9,6),(10,16,13),(11,17,14),(12,18,15),(19,25,22),(20,26,23),(21,27,24),(28,34,31),(29,35,32),(30,36,33),(37,43,40),(38,44,41),(39,45,42),(46,52,49),(47,53,50),(48,54,51),(55,61,58),(56,62,59),(57,63,60),(64,70,67),(65,71,68),(66,72,69),(73,79,76),(74,80,77),(75,81,78)], [(2,51,74),(3,81,49),(5,54,77),(6,75,52),(8,48,80),(9,78,46),(10,25,57),(11,55,23),(13,19,60),(14,58,26),(16,22,63),(17,61,20),(21,24,27),(28,45,66),(29,67,40),(30,36,33),(31,39,69),(32,70,43),(34,42,72),(35,64,37),(47,50,53),(56,62,59),(65,68,71),(73,79,76)], [(1,38,18),(2,39,10),(3,40,11),(4,41,12),(5,42,13),(6,43,14),(7,44,15),(8,45,16),(9,37,17),(19,54,72),(20,46,64),(21,47,65),(22,48,66),(23,49,67),(24,50,68),(25,51,69),(26,52,70),(27,53,71),(28,63,80),(29,55,81),(30,56,73),(31,57,74),(32,58,75),(33,59,76),(34,60,77),(35,61,78),(36,62,79)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81)], [(2,9),(3,8),(4,7),(5,6),(10,37),(11,45),(12,44),(13,43),(14,42),(15,41),(16,40),(17,39),(18,38),(19,32),(20,31),(21,30),(22,29),(23,28),(24,36),(25,35),(26,34),(27,33),(46,74),(47,73),(48,81),(49,80),(50,79),(51,78),(52,77),(53,76),(54,75),(55,66),(56,65),(57,64),(58,72),(59,71),(60,70),(61,69),(62,68),(63,67)]])
Matrix representation of C32⋊4D9⋊C3 ►in GL8(𝔽19)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 18 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 18 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 18 | 18 |
7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 18 | 18 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 18 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
17 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
18 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 17 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 18 | 15 | 18 | 15 | 4 | 3 |
0 | 0 | 4 | 3 | 4 | 3 | 16 | 1 |
0 | 0 | 4 | 3 | 18 | 15 | 18 | 15 |
0 | 0 | 16 | 1 | 4 | 3 | 4 | 3 |
0 | 0 | 18 | 15 | 4 | 3 | 18 | 15 |
0 | 0 | 4 | 3 | 16 | 1 | 4 | 3 |
2 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 17 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 15 | 18 | 3 | 16 | 15 |
0 | 0 | 18 | 3 | 4 | 1 | 18 | 3 |
0 | 0 | 18 | 3 | 16 | 15 | 16 | 15 |
0 | 0 | 4 | 1 | 18 | 3 | 18 | 3 |
0 | 0 | 16 | 15 | 16 | 15 | 18 | 3 |
0 | 0 | 18 | 3 | 18 | 3 | 4 | 1 |
G:=sub<GL(8,GF(19))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,1,18,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,1,18,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,1,18],[7,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,18,1,0,0,0,0,0,0,18,0,0,0,0,18,0,0,0,0,0,0,1,18,0,0,0,0],[17,18,0,0,0,0,0,0,3,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,1,0,0,0,0,0,0,16,17,0,0,0,0,0,0,0,0,18,4,4,16,18,4,0,0,15,3,3,1,15,3,0,0,18,4,18,4,4,16,0,0,15,3,15,3,3,1,0,0,4,16,18,4,18,4,0,0,3,1,15,3,15,3],[2,1,0,0,0,0,0,0,16,17,0,0,0,0,0,0,0,0,16,18,18,4,16,18,0,0,15,3,3,1,15,3,0,0,18,4,16,18,16,18,0,0,3,1,15,3,15,3,0,0,16,18,16,18,18,4,0,0,15,3,15,3,3,1] >;
C32⋊4D9⋊C3 in GAP, Magma, Sage, TeX
C_3^2\rtimes_4D_9\rtimes C_3
% in TeX
G:=Group("C3^2:4D9:C3");
// GroupNames label
G:=SmallGroup(486,170);
// by ID
G=gap.SmallGroup(486,170);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-3,-3,6050,548,500,867,3244,3250,11669]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^3=b^3=c^3=d^3=f^2=1,e^3=f*b*f=b^-1,a*b=b*a,c*a*c^-1=a*b^-1,a*d=d*a,a*e=e*a,f*a*f=a^-1,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=a^-1*b*c,c*f=f*c,d*e=e*d,f*d*f=d^-1,f*e*f=b*e^2>;
// generators/relations
Export